Sixth Semester B.E. Degree Examination, July/August 2021 Antennas and Propagation

Time: 3 hrs.
Max. Marks:100

Note: Answer any FIVE full questions.

1 a. Define the terms related to antenna theory,
i) Effective height
ii) Antenna efficiency
ii) Directivity.
(06 Marks)
b. Obtain an expression for maximum effective aperture of a short - dipole and show its directivity is 1.5 .
(08 Marks)
c. A low frequency transmitting antenna has a $\mathrm{R}_{\mathrm{r}}=0.5 \Omega$ and total los resistance of 2.5Ω. If the current fed to antenna is 100 A , calculate the power radiated, input power and antenna efficiency.

2 a. State and prove "Power theorem".
(06 Marks)
b. Obtain directivity of a source given by
$u=u_{m} \cos ^{2} \theta \quad 0 \leq \theta \leq \pi / 2$

$$
0 \leq \phi \leq 2 \pi .
$$

(08 Marks)
c. An end five array consisting of isotropic radiators is to have a directive gain of 30 .
i) Find array length and BWFN
ii) Find the above for the broadside array.
(06 Marks)

3 a. Obtain an expression for radiation resistance of a short dipole.
(08 Marks)
b. Draw a typical microstrip antenna and explain its working. Give 3 applications of microstrip antenna.
(06 Marks)
c. Explain the construction of a folded dipole element antenna and working principles.(06 Marks)

4 a. With suitable diagram, obtain the expressions for $\mathrm{E} \phi$ and $\mathrm{H} \theta$, the far field components of a small loop.
(10 Marks)
b. Explain the construction and working of a slot antenna.
(06 Marks)
c. A loop aerial operating at 500 KHz , is of height 0.5 m , width 0.5 m and 25 turns. The emf induced in the loop is $150 \mu \mathrm{~V}$. When the system is directed to receive maximum signal. Calculate the field strength of the received signal.
(04 Marks)
5 a. Give the construction of a E-H born antenna and explain its working by giving proper design equations.
(10 Marks)
b. What are frequency independent antennas? Explain with construction, the working of a logperiodic antenna.
(06 Marks)
c. A 64 m diameter dish antenna, operating at a frequency of 1.43 GHz is fed by a non directional antenna. Calculate its i) HPBW ii) BWFN iii) Gain with reference to $\lambda / 2$ dipole.

6 a. Write short notes on : i) Embedded antennas
ii) Plasma antennas
(12 Marks)
b. Draw the ray diagram for a dielectric lens antenna and obtain the equation for radius of curvature ' R '
(08 Marks)
7 a. Derive an expression for tilt angle of ground wave propagation.
(08 Marks)
b. Obtain an expression for field strength due to space wave propagation.
c. A TV transmitting antenna a mounted at a height of 120 mt radiates 15 KW of power at a frequency of 50 MHz . Calculate : i) Maximum line - of - right range ii) Field strength at receiving antenna. For $h_{r}=16 \mathrm{mts}$ at a distance of 12 km .

8 a. Discuss various layers of ionosphere showing electron density variation.
b. Define and explain the terms: i) MUF ii) Skip distance.
(08 Marks)
c. For a flat earth, assume that at 400 km reflection takes place. the maximum density corresponds to a refractive index of 0.9 at 10 MHz . Calculate range for which $f_{\text {muf }}=10 \mathrm{MHz}$.
(04 Marks)

